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Summary

A computational method to predict modal reflection coefficients in cylindrical

ducts has been developed based on the work of Lordi, Homicz, and Rehm, which uses the

Wiener-Hopf method to account for the boundary conditions at the termination of a thin

cylindrical pipe. The purpose of this study is to develop a computational routine to

predict the reflection coefficients of higher order acoustic modes impinging on the

unflanged termination of a cylindrical duct.

This effort was conducted under Task Order 5 of the NASA Lewis LET Program,

Active Noise Control of Aircraft Engines: Feasibility Study, and will be used as part of

the development of an integrated source noise, acoustic propagation, ANC actuator

coupling, and control system algorithm simulation.

The reflection coefficient prediction will be incorporated into an existing

cylindrical duct modal analysis to account for the reflection of modes from the duct

termination. This will provide a more accurate, rapid computation design tool for

evaluating the effect of reflected waves on active noise control systems mounted in the

duct, as well as providing a tool for the design of acoustic treatment in inlet ducts. As an

active noise control system design tool, the method can be used preliminary to more

accurate but more numerically intensive acoustic propagation models such as finite

element methods.

The resuking computer program has been shown to give reasonable results, some

examples of which are presented. Reliable data to use for comparison is scarce, so

complete checkout is difficult, and further checkout is needed over a wider range of

system parameters. In future efforts the method will be adapted to provide input

reflection coefficients to the GEAE segmented cylindrical duct modal analysis prediction

program.
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Active Control of Fan Noise: Feasibility Study

Volume 5: Numerical Computation of Acoustic Mode

Reflection Coefficients for an Unflanged Cylindrical Duct

1. Introduction

1.1 Study Assumptions and Objectives

The purpose of this study was to develop a computational routine to predict the

reflection coefficients of higher order acoustic modes impinging on the unflanged

termination of a cylindrical duct. This prediction will be incorporated into the existing

cylindrical duct modal analysis to account for the reflection of modes from the duct

termination. This will provide a more accurate, rapid computation design tool for

evaluating the effect of reflected waves on active noise control (ANC) systems mounted in

the duct l, as well as providing a tool for the design of acoustic treatment in inlet ducts. As

a treatment design tool, the method can be used preliminary to more accurate but more

numerically intensive acoustic propagation models such as finite element methods.

The classical duct modal analysis 2 provides an exact solution to duct propagation

in treated ducts, accurate to the convergence afforded by the number of modes used in the

solution expansion. It is limited in the sense of requiring idealized geometry; the duct

must be cylindrical with constant radius along its axis, and the reflection coefficient is that

for a cylindrical pipe with infinitely thin walls. Aircraft engine ducts have variable duct
radius and nacelles with finite thickness and rounded ends.

The cylindrical duct modal analysis does allow axial discontinuities in acoustic

treatment properties (segmented treatment), but allows no circumferential nonuniformities.

It calculates one frequency and one spinning mode order at a time, assuming coupling

among the radial modes but no coupling among spinning modes.

The modal analysis should be sufficiently accurate to allow evaluation of active

noise control concepts when adapted as part of a simulation model that includes the

coupling of the ANC actuators to the duct walls and the ANC feedback control system. If

required, more accurate prediction and confirmation of ANC or treatment suppression or

farfield radiation absolute levels can subsequently be done with a more accurate prediction

model (such as FEM).

An objective was to develop a reflection coefficient computational routine that is

reasonably rapid when coupled to the modal analysis, so that treatment design parametric

studies involving many cases with different frequencies and spinning mode orders are

practical and efficient. If only the treatment parameters change, the reflection coefficients

can be stored and re-used, increasing efficiency for multiple case runs. Twenty years ago,

when the segmented duct modal analyses were first developed, such a reflection



coefficientroutinewasdevelopedandincorporatedintoasegmentedductmodalanalysis3,

but it took so long to compute the coefficients that it was seldom used.

1.2 The Weiner-Hopf Technique

The approach in this study is founded upon the prior work of Lordi, Homicz, and

Rehm 4, (LHR) particularly as detailed in the second volume of their Air Force contract

final report 5. This work is based on the Wiener-Hopf solution for the reflection and

radiation of waves propagating in a pipe, and it, in turn, is based on the prior work of
several researchers 6'7's.

The Wiener-Hopf technique 9 is a very complicated mathematical method for

solving boundary value problems involving semi-infinite waveguides that radiate to the

farfield. The method transforms the partial differential wave equation and the semi-infinite

waveguide boundary conditions using spatial Fourier transforms (in wavenumber space) to

convert the solution to integral equation form. Solution of the integral equation requires a

special factorization of the kernel, invocation of properties of complex analytic functions,

and subsequent inversion of the Fourier transform in complex space using contour

integrals.

The method, although straightforward in principle, is not unique in the form of

separating the kernel, and requires application of advanced methods of complex variable

integral calculus to arrive at a solution that is, more or less, computable. Part of the

solution manifests itself in closed form, and part of the solution still requires a numerical

integration. The many steps in the derivation and the invocation of esoteric theorems of

complex analysis, as well as dealing with Bessel functions and their identities, make the

entire procedure very error-prone.

The effort in this development makes no claims of being particularly original. The

application of the Wiener-Hopf method by Lordi, Homicz, and Rehm to the case of higher

order spinning modes in a cylindrical pipe was assumed to be derived correctly, and, up to

the point where they begin to put results in computational form, the derivation was not

checked step-by-step. LHR present final equations that are almost, but not quite, ready

for computation. This analysis picks up at a particular stage of the LHR derivation and

develops a computation that gives reasonable results and runs quickly on an IBM-PC.

Final debugging and checkout of the computer program is still in progress. Unfortunately,

reliable data against which to check the computation is scarce.

1.3 Modal Solution in a Cylindrical Duct

To define the modal reflection coefficients for wave propagation in a cylindrical

duct, we present the form of the modal acoustic pressure as given by LHR for the mth

radial mode of the n th order spinning mode:



(1-0

where

r = duct radius

z = axial variable

t = time

n = spinning mode order (-oo < n < oo)

m = radial mode number (starting from m = 1 to oo)

p,_ = (n,m) pressure mode

A_ = (n,m) pressure mode coefficient

k_ = (n,m) mode axial propagation constant (axial wavenumber)

Jn(x) = n th order Bessel function of first kind

_/,_ = (n,m) hardwall cylindrical duct eigenvalue

a = duct radius

R_j = reflection coefficient for reflection of radial mode m into radial mode j

co = circular frequency (2rcf')

The complete n th order spinning mode solution for the pressure in the duct is the

superposition of all pressure modes over index m. The cylindrical (inlet) duct geometry is

shown in Figure 1.

/rzI
urce /

\

Figure 1 Duct geometry and coordinate system.



Note that thesumovermodesinvolvingthereflectioncoefficient,indexj, goesto

infinity, which implies that all cut-off modes must be included in this summation. A basic

assumption of this study will be that the reflection coefficient sum can be approximated by

summing only to the highest cut-on mode order, denoted by m0, so that reflections into

cut-offmodes are neglected (in effect, cut-off mode reflection coefficients are set to zero).

This will not cause an error in the cut-on mode reflection coefficient calculation,

and it may be assumed that energy reflected into cut-offmodes will attenuate very quickly.

The reflected cut-off modes may have an effect on the overall segmented duct solution for

ducts with very short segments at the termination end. Including the computation of cut-

off mode reflection coefficients should be considered for future program upgrades.
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2. Basic Equations for the Reflection Coefficient

Given the spinning mode order, n, the reflection coefficient for the reflection of the

m th radial mode into the jth radial mode at the termination of an unflanged circular duct,

based on the LHR analysis, is

iy_j _/(ka+kr_a)(ka+knja)K+(k_a)K÷(knja)jn(y2)

R_J = 2knj a (k_ma + knja)(n2 _ _,2n_i) jn(_,2j) (2-1)

where

n = spinning mode order

m,j = radial mode indices

7_ = (n,m) mode eigenvalue

k_ = (n,m) mode axial propagation constant
a = duct radius

k = co/c

c = speed of sound

The axial propagation constant km is given by

knma = _/(ka) 2 - 72 (2-2)

and the mode eigenvalues 7_ are determined as the roots of the equation

Jn(Tnm) = 0 (2-3)

These are the eigenvalues for the modes in-a hardwall circular duct, determined from the

boundary condition that requires the normal acoustic velocity (or derivative of pressure)
to be zero at the wall.

The K+ are defined as functions of argument _a by

K+((a) = _n(ka-(a)J_(v)H'(1)(v) e }M(ga) (2-4)

for n > 0, where Hnm is the Hankel function of the first kind, and

v = v(_a) = 4(ka) 2 - (_a) 2 (2-5)

From references on Bessel functions, we can write the Bessel function derivatives and the
definition of the Hankel function derivative as



J_(v) = njn(v )- Jn+l(V)
v

H_(1)(v) = Jn (v)+ iY n (v)

(2-6)

(2-7)

where

Y_(v) = nyn(v) - Yn+l(V )
v

The function M(_a) in Equation (2-4) is given by the integral

M(_a)=-- 7__a _ I kÈi"a n(v)_- n(Vn,m_l)_.....____.zalwa,'"

rt m=lL k .... ,a (¢a)Z-(wa) z

kn0a = ka

otherwise km is defined by Equation (2-2).

shown by LHR 1° to arise from the Wiener-Hopfkernel factorization procedure.

The function f2(v) is defined by

= arct LJn(v)j- -

where

(2-8)

(2-9)

(2-10)

The function M(_a) is a contour integration

(2-11)

f2(O) = 0 (2-12)

v nm = _/(ka) 2 - (knma) 2

O(Vnm ) = (m - 1)Tt

(2-13)

(2-14)

Equation (2-14) defines the branch of the arctangent function to be chosen for each mode,

and guarantees that f2(v) is continuous as the arctangent goes through each cycle of 7t.

Use of Equation (2-14) necessitates keeping track of the arctangent branch when passing

from one modal segment to the next in Equation (2-9).



The path of the M-integral in Equation (2-9) is shown in Figure 2. The path

proceeds backwards along the real axis starting at wa = ka and includes all cut-on modes

before it reaches wa = 0. The index m0 denotes the highest order cut-on mode. The

integral proceeds along the real axis to zero, then heads up the imaginary axis, where it

picks up all cut-off modes. The parameter Ca is a pole on the real axis (for the reflection

coefficient calculation _a = k_a). The integration to high cut-off mode orders should

eventually converge, since the denominator of the M-integral goes to infinity as i.wa goes

to infinity.

i.wa

cut-off mode

_ knja (j-_oo)

/cut-on mode

wa

)

Figure 2. M-integral integration path in complex plane (dashed line)

The parameter Ca takes on different meanings depending upon whether the

reflection coefficient or the farfield radiation is being calculated. For the reflection

coefficient calculation, Ca takes on only the values k_a, for all modes m. Thus, it is

located only at intersections between modal integration segments on the real axis, and the

poles involve the endpoints of two adjacent integration segments. For the farfield

radiation calculation, the Ca may occur inside any segment, as well as at the endpoints.



3. Behavior of the Integrand of the M-Integral

The function M(_a), defined in Equation (2-9), has a direct effect on the value of

reflection coefficient R_j through the K÷ factor, defined in Equation (2-4). The

computation of the integral in M(_a), which we shall refer to as the M-integral, is the most

difficult aspect of the entire reflection coefficient calculation. The M-integral can be split
into two terms:

k,a f)(v) d(wa)GV 2_a Y_ J" 2 2
=-- -(-w7Z m=l k .... la (Qa) a)

(3-1)

and

k.a f)(Vn'm-1) d(wa)GC- 2_a _ f 2
7t rn=lk .... ,a (_-_---(-_

(3-2)

where GV is referred to as the variable-f) part of the M-integral and GC as the constant-

I) part. Both integrals are written as a sum over all cut-on and cut-offmodes.

It is instructive to examine the behavior of the integrand functions of the M-

integral, particularly the function f)(v), over the real axis from ka down to zero. As a

sample case, we shall use the following set &parameters:

Spinning mode order, n = 2
ka = 12.5

For these conditions, there are three cut-on modes that have the eigenvalues and

propagation constants given in Table 1.:

Radial mode order m Eigenvalue 72,.
3.054237

Axial wavenumber k2m

1 12.12112

2 6.706133 10.54883

3 9.969468 7.540437

Table 1. Test case mode eigenvalues and propagation constants

We are examining in particular the variable-f) part of the M-integral over the real

axis for 0 <_wa _<ka. The integrand for this integral may be written as

f)(v) f2(v) Q(v)
- (3-3)

_a 2 _ wa 2 (_a- wa)(_a + wa) _a - w

8



where Q(v) is the non-singular factor in the integrand,

Q(v)- _(v) (3-4)
_a + wa

We shall examine f_(v), Q(v), and the complete integrand separately, with Ca chosen

arbitrarily as the second mode wavenumber, Ca = 10.54883.

The MathCAD program FCM2.MCD, used to carry out the above computations,

was used to generate the output in Figure 3, and shows what values are obtained when the

_-function is calculated directly from the arctangent function definition, using simply the

arctangent principle value. Notice that as the Bessel function derivatives wind through

their zero-values, the arctangent has discontinuities when the principle value cycles

through re. The function can be made continuous by adding an appropriate multiple of 7t,

depending on how many cycles have been accumulated.

When f_ is re-defined to include these branch cut shifts, the function becomes

continuous, as illustrated in the FORTRAN-generated plot shown in Figure 4. Notice

here that the f_-function is continuous at the intersections between mode segments, and

that the wa-axis is plotted backwards, in the direction of integration.

Figure 5. shows the non-singular part of the integrand, Q(v), for this case. This

function is well-behaved within the real axis integration limits, as long as fl(v) is properly

defined.

Finally, note the behavior of the full integrand in Figure 6., with a first-order pole

at Ca = 10.54883. A special Cauchy principle value integration procedure must be used to

compute this improper integral containing a singularity.

The constant-f_ part of the M-integral differs in that f_ undergoes a discontinuous

jump in otherwise constant value as the junction of endpoints between two modal

segments is crossed by the integration. The integrals, however, can be computed in closed

form within each modal segment, with special attention to the integration across the pole.

The integrands for the part of the M-integral up the imaginary axis pose no

additional special problems, and will be considered later. By limiting _a to real values, we

are limiting the reflection coefficients to include only cut-on modes. This allows the

effects of cut-off modes to be included in the computation of each cut-on mode reflection

coefficient, but omits the reflection coefficients for cut-offmodes themselves. This avoids

the (not too difficult) problem of complex values of _a, which would lead to poles along

the imaginary axis. Other than causing programming difficulties with the complex algebra,

there is no practical reason why cut-off modes could not be included, but this will be left

for future program upgrades.



FJ(m,x) :=m-jn(m,x)- Jn(m+ 1,x)
x

FY(m,x) :=myn(m,x)- Vn(m-+- 1,x)
x

_(m,x) :=atan(FY(m'x) 1 _t
\FJ(m,x) j 2

m:=2

ka := 12.5

x(w) :=k_a2- w2

w := 0.,.01.. 12.45

Bessel Functions

0 .....
_.- - .

FuncUon

i

t

e
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l

_,_--m,x(w) ) :
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I

Figure 3.
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4. Computation of the M-Integral

4.1 Real Axis, Variable

This integral, for each modal segment, can be written

k.,.a _(V)

GMVR(m): I l, )-[w)'_a'f-Ta'2d(wa)
k.x._la

(4-1)

where

kn0a = ka (4-2)

and m goes from m = 1 to m = m0, where m0 is the highest order cut-on mode. In

addition, there is the partial segment

0 n(v)
GMVR(m 0 + 1) = I d(wa) (4-3)

k..m0a (_a)2 - (wa) 2

which completes the full real axis range of 0 _<wa _<ka.

Over a "clean" segment that contains no poles at either endpoint, this integral must

be computed numerically. A Romberg FORTRAN integration subroutine 11 has been

adopted for this purpose, and it converges rapidly for clean segments.

The part of the integration that requires special care is the choice of the correct

branch of f2(v) for the segment. The segment endpoints are obtained from the roots of

the derivatives of the Bessel function of the first kind (Equation (2-3)). A subroutine to

compute these roots is provided with the program.

This Bessel function root extraction program is accurate to about 1E-6 in single-

precision arithmetic, so that when f2(v) is computed close to an endpoint in the numerical

integration scheme, care must be taken not to slip to the other side of the root, which will

cause a discontinuity in fl(v) and the integrand. To ensure that a particular numerical

integration remains entirely within the proper segment, so that f2(v) is computed with the

correct multiple of x adder, the limits of integration are started and stopped arbitrarily

0.001 units ofwa from the endpoints of the segment.

This causes a small error in the computation, but avoids a much larger error that

would result from the Romberg scheme with a discontinuous integrand, not to mention an

extreme time penalty as the Romberg scheme attempted to iterate through the

discontinuity. This is a quick, crude, practical solution to the problem, and probably more

13



sophisticatedschemescouldbedevelopedthatwouldallowcloserapproachof theintegral
limitsto theendpointrootsbutstill guaranteecontinuity.

Theintegrationacrosstheendpointpoleinvolvestwo adjacentsegmentsthat must
beconsideredtogether. A pre-integrationsortingschemeidentifieseachsegmentasone
of thefollowingtypes:

Type1- Cleansegment,nopoles
Type 2 - Pole internal to endpoints

Type 3 - Pole at upper integration limit endpoint (lower wa-value)

Type 4 - Pole at lower integration limit endpoint (higher wa-value)

The integral across the pole is considered in the Cauchy principle value sense _2, which

makes the basic assumption that the integral exists. We know that the Q(v) factor in the

integrand is continuous, so that the only problem arises from the 1/(_a - wa) singularity.

As an illustration of the application of the Cauchy principle value theorem to the

integration across a pole, consider the simpler form

5 dx
I= j-- (4-4)

lX-2

This can be computed as

x-2j [lnN-2l] -e+[lnN-21152+c}=
2: [lnl-el- lnl- II+ ln131-lnl l]

_--_0

(4-5)

The terms in e can be cancelled before taking the limit, giving, simply

5 dx
I = j - In3 = 1.10 (4-6)

lX-2

In the M-integral, the function Q(v) in the integrand prevents integration across the

pole in closed form, so that an approximate method must be used. Consider the

integration across the pole between arbitrary limits _+e on either side of the pole, as shown

in Figure 7. The integral is written as

SG= I aQ(v-----------z-Jd(wa) (4-7)

_a+_ Ca- wa

14



Segment j+l

Direction of

<

Integra_on

> wa

I Segment j

_a +s

Figure 7. Integration across singularity on real axis

If s is chosen sufficiently small, we can approximate

illustrated in Figure 8 and written as

Q(x) = DlWa + D O

Q(v) by a linear function, as

(4-8)

Dlwa + DO

IQ(wa)

wa

)

_a - _ _a _a +

Figure 8. Linear fit to Q-function around pole

Then we can write

r=a-_ DlWa +D 0 I_a-_ ;a-_SG=- _ d(wa) = - DlWa d(wa) +

_a+e wa-_a L_a+ a wa- _a _a+e
wD_°_ad(wa)l

(4-9)

15



When carried out in the principle value sense, this can be shown to give simply

SG = 2Die (4-10)

In the computer program, this contribution from the integral around the pole is

added to the numerical integration for segment j taken up to _a + e, and the numerical

integration for segment j+l includes only the contribution from the integral starting at

_a - e.

The coefficients Do and D1 are obtained from a simple 3-point linear regression

curve fit to the values of Q(v) at the points

P l: wal = _a- e

P2: wa2 = _a

P3: wa3 = Ca e

as shown in Figure 8. An example of the accuracy of the linear assumption using e = 0.05

is shown in Figure 9.

Examination of a few cases has indicated that e = 0.05 is a reasonable assumption,

introducing only small errors in the overall integral. The trade-off is in computation time,

since the Romberg numerical integration scheme requires many more iterations to

converge to the specified tolerance the closer the endpoint comes to (i.e., starts going up)

the pole. A diagnostic program is available to examine the details of the variable-f2

integration along the real axis.

16
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Figure 9. Linear fit of function Q(wa) around pole for m = 2, _a = 10.54883, ka =

12.5, with e = 0.05.

4.2 Real Axis, Constant F2

The integral along the real axis with the constant-f2 numerator in the integrand can
be written

k=a _(Vn, m_l )
GMCR(m) = I d(wa)

k .... ta (_a) 2 -(wa) 2
(4-11)

where Equation (4-2) still applies and there is an integral analogous to Equation (4-3) over

the partial segment from k_=0a to zero. The integral for GMCR can be computed in

closed form, with special attention to integrating across any singularities.

Part of this integral, it will turn out, is required in a special form to be used to
resolve an indeterminate in the reflection coefficient K. function. The form needed for this

integral is solved by LHR (Reference 4, p. 48, Eqn (A-37)), and is given as

mo lnlknm a +_a 1GMCR(m)= m=l_ Lk--_-_ " +i[_(Vn'm°)+_(Vn'm')] (4-12)
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whereml is the modewhoseaxialwavenumberis just greaterthanor equalto Ca. This
integral includesthe 2_a/Ttmultiplicationfactor that is not yet includedin the other
integrals.

To derivetheintegralin this form,LHR multiplythe integrandin Equation(4- I 1)
by2_aandexpandasthesum

2_a 1 1
--- t--- (4-13)

_a2-wa 2 Ca+wa Ca-wa

Theythenoperateoneachof theresultingtwo integralsseparately,solvingeachin closed
formto giveGMCR.

The summation of natural log term, when

M(_a), (see Equation (2-4)), becomes the factor

(m0 ,nrk a+ a _ [knma+_al _exp mZ_l Lknma-_a -m=lLknma-_--_j

substituted into the exponential in

(4-14)

One of the factors in this multiple product will be combined with the J_n factor in the

reflection coefficient to resolve an indeterminate form. The remaining two constant terms

are purely imaginary, and will affect only the phase of the reflection coefficient when

substituted into the M-integral exponential.

4.3 Imaginary Axis, Variable f_

For the integration over modes up the imaginary axis, we make the transformation
of variable

wa = iy

so that y is a real variable of integration.

segment gives

(4-15)

Inserting this into the integral for each modal

,:.ja f2(v(y)) dy
GMVI(j)=i f _a2+y 2

K j__a

where index j implies a cutoff mode order greater than m0 and

i_:nja = knja = i_r 2j - (ka) 2

(4-16)

(4-17)

18



makingK:njreal,since,for cutoffmodes,N,j> ka.

Thefirst valueofj in Equation(4-16)will bej = m0+2,that is, the secondmode
orderabovecutoff. Wemustalsoincludethepartialsegmentintegralstartingfromy = 0,

Kn.mo+la £2(v(y))
GMVI(m 0 +1) =i _ dy

0 _ a2 + y2
(4-18)

In the sum of integrals over all real and imaginary mode segments, GMVR(mo+I) from

Equation (4-3) combines with GMVI(m0+I) to give the total contribution of mode m0+l

to the M-integral.

When transformed to the y-variable, the argument of the Bessel function in f2(v)

becomes

v(wa) = v(y)= 4(ka) 2 -(iy) 2 = 4(ka) 2 + y2 (4-19)

which is real. Thus, the entire integrand of Equation (4-16) is real, and GMVI(j) is purely

imaginary. This indicates that integral up the imaginary axis contributes only to the phase

of the reflection coefficient, through the M-integral exponential.

It is assumed without proof that the sum of integrals up the imaginary axis

converges to a finite value, and that only a finite number of terms need be included to

obtain sufficient accuracy. This assumption will be examined later in test case

computations.

Since f2(v) is variable, the integration in Equations (4-16) and (4-18) must be

computed numerically. This is accomplished using the Romberg method, which can be

carried out as a real integral. All integrals are of the "clean segment" type, with no

singularities, since _a is real.

If it were desired to compute the reflection coefficient for a cut-off mode, such

that _a became imaginary, a method similar to the method of integration through a

singularity on the real axis would have to be used on the imaginary axis. To reiterate,

although reflection coefficients for scattering into or among cut-off modes are not

calculated, the effect of the scattering into cutoff modes on the reflection coefficient of the

cut-on modes (a phase shift effect) is included.

4.4 Imaginary Axis, Constant f_

This integral, for each mode segment, can be written
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K°,ja _(Vn, j_l ) dy
GMCI(_j) = i _ _a 2 + y2

K n,jqa

(4-20)

where the transformation of Equation (4-15) has been used to make the integral itself real.

As in the case of GMVI, the integral over the partial segment from y = 0 to y = K,,m0.la
must also be included.

There are no singularities in this integral, and, since the numerator is a constant

over the mode segment, it can be evaluated in closed form as

GMCI(j) = i f)(Vn'j-1)[arctanI_a_ca - arctan(_C_--_lal I (4-21)

LHR integrate this part using the same expansion of the denominator into two

terms that they used to find GMCR, leading to a log sum solution. The form in Equation

(4-21) is equivalent to the LHR form, and should be slightly easier to compute. No

problem should be encountered by taking the principle value of the arctan function in

Equation (4-21).

4.5 Final Form of the M-Integral

After shifting the multiple product factor in GMCR from the exponential of the M-

integral to the multiplier of the exponential, the remainder of the M-integral can be written

as

M(_a) 2_a mo= --' Z GMVR(m) + GMVR(m 0 + 1)
71: m=l

9ra Max
+ "_'< E GMVI(j) + GMVI(m 0 + 1)

/_ j=mo+2

2_at Max }
Y_ GMCI(j) + GMCI(m o + 1)

7t [j=m0+2

- i[_(v n,m0 ) + D'(v n,m, )]

(4-22)

where expressions for the integrals are derived above. Integrals that contain a "V" in the

name must be evaluated numerically, while integrals with names containing a "C" are

given by closed form expressions. The required procedures for integrating across

singularities must be observed for computing the GMVR integrals. The sums of integrals

up the imaginary axis are continued to some maximum value Max, and this must be

suitably high to provide an acceptable convergence tolerance.
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5. Computation of Reflection Coefficient

5.1 Final Computational Form

When the multiple product derived from the M-integral integration of the constant-

part of the integration along the real axis is combined with the K,(_a) function from

Equation (2-4), we obtain a new form:

K+(_a) = #_(ka _ _a)Jn(v)H_1)(v)/"_m=lL Knma---_-J_[k_a +_a] e_M(_a)
(5-i)

where now M(_a) is the revised form given by Equation (4-22). Combining the radicals

and rearranging slightly gives the square-root factor

I Jh(v)
RKF(_a) = n(ka-_a)k$--_a

m o

H_l)(v)(knj +_a) i]
m=1

m_j

-knma + _a] (5-2)
knma -_-a J

where the jth factor in the multiple product has been extracted and its denominator

associated with J_a(v).

As _a _ k_ja, this ratio becomes an indeterminate form (0/0), since vnj = y_j is a

root of the Bessel function derivative. Using L'Hospital's procedure for indeterminate

forms (taking the derivative of the numerator and the denominator with respect to _a

before taking the limit), we can show that

[Jn(v(_a))] = knja/ y 2nj)Jn(y nj)_a#knja knja- _a J y-_nj _n-
(5-3)

Since Jia('t'nl) = O, we have

H[a(Ynj) = i Y_(?nj) (5-4)

Using the Bessel function identity

2
Jn(x)Yl_(x)- Jh(x)Yn(x) = --

?t'K
(5-5)

we have
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i Jn(Y nj)Y_(Y nj) - 2i (5-6)

Using Equations (5-2) through (5-6), the product of the K÷ functions can finally be written

as

K+ (k = a)K +(k .. a) =

4ikn, a k_a _/(ka - kn.a)(ka - k_a)(n 2 2 2 2- r o.)(n - r _)n.n_

(5-7)

where

(5-s)

and

(5-9)

This gives the final computational form for the reflection coefficient for the mth

radial mode reflecting into the _tth radial mode:

2k_ J=(y_a)

R_ =-T: (k_a+k=_a)jn(7_a)

I( f)( 2 _(k_af) n2- V:_7..YI"FIm e_M(k_"_)× (ka)
n2 2

(5-10)

where M(k._a) is obtained from Equation (4-22).

5.2 Sample Calculations

An edited computer printout follows of the computation of the reflection

coefficient for a test case, denoted Case #1, with n = 2, ka = 12.5, and e = 0.05, where e is

the distance around the singularity used for the linear fit. Diagnostic results for the

intermediate computations of the integrals are included in the Case #1 printout.
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Note that for this valueof ka, no modesarenearcut-off, so that all reflection
coefficientmagnitudesaresmall,thelargestbeingtheR13cross-termwith amagnitudeof
0.132. Note that from the results of the imaginary axis integrations that the last term for

the l0 b cut-off mode is about 3-5% of the sum for the constant-f2 or variable-f2 parts.

PROGRAM CDRCI TEST CASE #I

CALCULATES MODAL REFLECTION COEFFICIENTS

USING HOMICZ & LORDI M-INTEGRAL FORM

SPINNING MODE ORDER M = 2

ka = 12.50000000

NUMBER OF CUT-ON MODES = 3

NUMBER OF MODES IN CALC = 13

EPSILON ABOUT POLE = .050000

EIGENVALUES AND PROPAGATION CONSTANTS

ROOTA ARE INTEGRATION SEGMENT ENDPOINTS

MODE EV PKA REAL PKA IMAG ROOTA

1 3

2 6

3 9

4 13

5 16

6 19

7 22

8 25

9 28

I0 32

II 35

12 38

13 41

14

05423700 12.

70613300 10.

96946800 7.

17037000

34752000

51291000

67158000

82604000

97767000

12733000

27554000

42265000

56894000

00000000

12112000 .00000000 12.12112000

54883000 .00000000 10.54883000

54053700 .00000000 7.54053700

00000018 4.14833500 .00000000

00000046 10.53525000 4.14833400

00000065 14.98345000 10.53525000

00000083 18.91430000 14.98345000

00000099 22.59943000 18.91430000

00000114 26.14298000 22.59943000

00000129 29.59586000 26.14298000

00000144 32.98656000 29.59586000

00000159 36.33250000 32.98656000

00000173 39.64501000 36.33250000

00000000 .00000000 39.64500000

REAL AXIS INTEGRATIONS:

GV2 ARE SEGMENT INTEGRALS FOR VARIABLE OMEGA PART

JS = SEGMENT #: ISX = OMEGA MULTIPLIER: ITP = SEGMENT TYPE

FOMM0 AND FOMMZ ARE TERMS IN CONSTANT OMEGA INTEGRATION

JM = RADIAL MODE NUMBER: GMR = TOTAL REAL AXIS INTEGRAL

JS ISX ITP GV2

1 0 3 -3.1993660E-02

2 1 4 -1.4871500E-01

3 2 1 -2.3233030E-01

4 3 1 -4.7253740E-01

JM= 1 FOMM0= 6.2832600E+00 FOMMZ= 2.5844570E-04

REAL AXIS INTEGRAL, JM= 1 GMR= -6.8335920E+00+ 6.2835!90E+00"i

JS ISX ITP GV2

1 0 1 -2.2201310E-03

2 1 3 3.7623970E-01

3 2 4 -8.1834660E-01

4 3 1 -6.6436000E-01

JM= 2 FOMM0= 6.2832600E+00 FOMMZ= 3.1417410E+00
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REAL AXIS INTEGRAL, JM= 2 GMR= -7.4454900E+00+ 9.4250010E+00"i

JS ISX ITP GV2

1 0 1 -9.2672090E-04

2 1 1 4.1502940E-02

3 2 3 1.4690930E+00

4 3 4 -2.7157840E+00

JM= 3 FOMM0= 6.2832600E+00 FOMMZ= 6.2832600E+00

REAL AXIS INTEGRAL, JM= 3 GMR= -5.7899020E+00+ 1.2566520E+01"i

IMAGINARY AXIS INTEGRALS FOR I0 CUTOFF MODES

Xl & X2 ARE SEGMENT ENDPOINTS ON IMAGINARY AXIS

GCI IS CONSTANT OMEGA PART; GVI = VARIABLE OMEGA PART

NOTE THAT GCI AND GVI ARE IMAGINARY NUMBERS

JS ISX

1 3

2 4 4

3 5 I0

4 6 14

5 7 18

6 8 22

7 9 26

8 I0 29

9 II 32

i0 12 36

X1

0000000

1483340

5352500

9834500

9143000

5994300

1429800

5958600

9865600

3325000

X2

4 1483340

I0 5352500

14 9834500

18 9143000

22 5994300

26 1429800

29 5958600

32 9865600

36 3325000

39 6450000

GCI

2.3842440E-01

2 .9995660E-01

1.8152870E-01

1 .4290520E-01

1.2069470E-01

I. 0551070E-01

9. 4195800E-02

8. 5317340E-02

7. 8105830E-02

7.2101210E-02

GVI NST

2.4418080E-01 2

3.4049100E-01 2

2.0208300E-01 1

1.5618500E-01 1

1.3015610E-01 1

1.1265110E-01 1

9.9799390E-02 1

8.9842860E-02 1

8.1842490E-02 1

7.5241620E-02 1

INTEGRAL TOTALS (JM, GVI,C-CI,GMISUM)

1 !.5324740E+00 1.4187410E+00 _.2773180E+01

M-INTEGRAL FOR MODE JM= 1

GM= -6.8335920E+00 + 2.9056700E+01"i

JS ISX

1 3

2 4

3 5

4 6

5 7

6 8

7 9

8 I0

9 II

I0 12

Xl

0000000

4 1483340

10 5352500

14 9834500

18 9143000

22 5994300

26 1429800

29 5958600

32 9865600

36 3325000

X2 GCI

4.1483340 3.1129010E-01

10.5352500 3.6638410E-01

14.9834500 2.0563030E-01

18.9143000 1.5587390E-01

22.5994300 1.2871610E-01

26.1429800 1.1088770E-01

29.5958600 9.8001730E-02

32.9865600 8.8121140E-02

36.3325000 8.0236280E-02

39.6450000 7.3760720E-02

GVI NST

3.1873770E-01 2

4.1483920E-01 1

2.2870910E-01 1

1.7028760E-01 1

1.3877520E-01 1

1.1837650E-01 1

1.0382320E-01 1

9.2790350E-02 1

8.4071740E-02 1

7.6971370E-02 1

INTEGRAL TOTALS (JM, GVI,GCI,GMISUM)

2 1.7473820E+00 1.6189020E+00 2.2606590E+01

M-INTEGRAL FOR MODE JM= 2

GM= -7.4454900E+00 + 3.2031590E+01"i

JS ISX Xl X2

1 3 .0000000 4.1483340

2 4 4.1483340 10.5352500

3 5 10.5352500 14.9834500

4 6 14.9834500 18.9143000

5 7 18.9143000 22.5994300

6 8 22.5994300 26.1429800

7 9 26.1429800 29.5958600

8 I0 29.5958600 32.9865600

9 ii 32.9865600 36.3325000

I0 12 36.3325000 39.6450000

GCI

5.8457050E-01

5.5824050E-01

2 5824970E-01

1 8100920E-01

1 4326990E-01

1 2024990E-01

1 0444730E-01

9 2777270E-02

8 3723440E-02

7 6447380E-02

GVI NST

5.9809270E-01 2

6.2806500E-01 2

2.8668140E-01 2

1.9758640E-01 2

1.5440400E-01 1

1.2834160E-01 1

1.1063630E-01 1

9.7684410E-02 I

8.7720260E-02 1

7.9771590E-02 1

INTEGRAL TOTALS (JM, GVI,GCI,GMISUM)

3 2.3689840E+00 2.2029860E+00 2.1947530E+01
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M-INTEGRAL FOR MODE J-M= 3

GM= -5.7899020E+00 + 3.4514050E+01"i

REFLECTION COEFFICIENTS - PHASE IN DEGREES

JM JL REAL-RC IMAG-RC RCMAG RCPHS

1 1 4.7273920E-02 4.6988270E-02 6.6653740E-02

1 2 5.8429380E-02 4.9116320E-02 7.6330890E-02

1 3 -1.2287330E-01 -4.7580420E-02 1.3176390E-01

2 1 3.3685690E-02 2.8316530E-02 4.4006270E-02

2 2 -4.1341060E-02 -2.9244140E-02 5.0638940E-02

2 3 -8.4828000E-02 -2.4953930E-02 8.8422210E-02

3 1 -3.5215500E-02 -1.3636560E-02 3.7763570E-02

3 2 -4.2169790E-02 -1.2405130E-02 4.3956550E-02

3 3 7.8862390E-02 -3.4299810E-03 7.8936950E-02

44 8264

40 0507

-158 8320

40 0507

-144 7249

-163 6076

-158 8320

-163 6076

-2 4904

Case #2 below is the same as Case #1 except that e is reduced to 0.02. Comparing

the reflection coefficients for this case with Case #1 indicates very small differences in the

reflection coefficient magnitudes and no difference in the phases. This indicates that, at

least for n = 2, e = 0.05 is a reasonably good assumption, and the total reflection

coefficient computation at e = 0.05 takes only a few seconds on a 33MHz IBM-PC 486.

PROGRAM CDRCI TEST CASE 2

CALCULATES MODAL REFLECTION COEFFICIENTS

USING HOMICZ & LORDI M-INTEGRAL FORM

SPINNING MODE ORDER M = 2

ka = 12.50000000

NUMBER OF CUT-ON MODES = 3

NUMBER OF MODES IN CALC = 13

EPSILON ABOUT POLE = .020000

EIGENVALUES AND PROPAGATION CONSTANTS

MODE EV PKARL PKAIM ROOTA

1 3.05423700 12.12112000 .00000000 12.12112000

2 6.70613300 10.54883000 .00000000 10.54883000

3 9.96946800 7.54053700 .00000000 7.54053700

4 13.17037000 -.00000018 4.14833500 .00000000

5 16.34752000 -.00000046 10.53525000 4.14833400

6 19.51291000 -.00000065 14.98345000 10.53525000

7 22.67158000 -.00000083 18.91430000 14.98345000

8 25.82604000 -.00000099 22.59943000 18.91430000

9 28.97767000 -.00000114 26.14298000 22.59943000

I0 32.12733000 -.00000129 29.59586000 26.14298000

ii 35.27554000 -.00000144 32.98656000 29.59586000

12 38.42265000 -.00000159 36.33250000 32.98656000

13 41.56894000 -.00000173 39.64501000 36.33250000

14 .00000000 .00000000 .00000000 39.64500000
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REFLECTION COEFFICIENTS

JM JL RL-RC IM-RC RCMAG RCPHS

1 1 4.7286910E-02 4.7001180E-02 6.6672050E-02 44.8264

1 2 5.8450030E-02 4.9133670E-02 7.6357860E-02 40.0507

1 3 -1.2288450E-01 -4.7584760E-02 1.3177600E-01 -158.8320

2 1 3.3697590E-02 2.8326530E-02 4.4021820E-02 40.0507

2 2 -4.1358900E-02 -2.9256770E-02 5.0660800E-02 -144.7249

2 3 -8.4842400E-02 -2.4958170E-02 8.8437220E-02 -163.6076

3 1 -3.5218710E-02 -1.3637800E-02 3.7767010E-02 -158.8320

3 2 -4.2176950E-02 -1.2407230E-02 4.3964010E-02 -163.6076

3 3 7.8855130E-02 -3.4296650E-03 7.8929690E-02 -2.4904

The reflection coefficient Kru,rL is the factor by which the JM th forward-travelling

radial mode is multiplied to give the contribution of the JM forward mode to the

backward-travelling JL mode. The magnitude of the complex value Kr_rL gives the factor

by which the amplitude of the component of the reflected mode decreases, and the phase

of R_z. is gives the phase shift of the reflected mode component.

Figure 10 shows the computation of the R33 reflection coefficient magnitude and

phase as a function ofka for frequencies just above cut-off of the n = 2, j = 3 mode to a ka

value just below cut-on for the j = 4 mode. The reflection coefficient appears to be

tending toward a value of 1.0 in magnitude and -180 ° in phase at the cut-offka-value. As

ka approaches the cut-off ka, the value of e must be decreased to keep it between ka and

the cut-off point.
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6. Conclusions and Recommendations

A computational method to predict modal reflection coefficients in cylindrical

ducts has been developed and gives reasonable results. Reliable data to use for

comparison is scarce, so complete checkout is difficult. Further checkout is needed over a

wider range of system parameters. One suggestion is to compare the computations versus

a finite element prediction model.

The method will be adapted as a subroutine to the GEAE segmented cylindrical

duct modal analysis.

A near-term extension would be to apply the analysis to the prediction of the

complex farfield directivity pattern, which can be done directly. The M-integral in the

farfield case should be the same, only the algebraic factor is different. There may be other
indeterminate forms to be resolved.

Upgrades that should be considered are to include the effect of mean flow in the

duct and to examine the difficulty of extending the analysis to annular ducts.

The computation could be improved by adjusting the starting value of the

integration along the real axis based on the behavior of the f_-function for wa near ka. In

this case, Y'n goes to infinity but if2 goes to zero. Currently, the arbitrary value of

wa = ka- 0.05 is used, but a better method to determine the starting value has been

developed that could be incorporated into the numerical integration subroutine.

The analysis could be upgraded to double precision, particularly the determination

of the Bessel function roots, but there is probably more error in the integral

approximations and the assumption of an idealized unfianged pipe than this would

warrant. Numerical precisions in the computation are currently fairly well "balanced".

The method could be extended to include a variable number of cut-off modes in

the integral up the imaginary axis, so that convergence properties could be examined. The

computation could also easily be extended to predict the reflection coefficient for cut-off
modes.
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